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Not Just a Database: Reproducible AI for Macroeconomics

▶ Scientific Rigor
Infrastructure to maintain scientific standards in text analysis.

▶ Unprecedented Scale
Largest collection of standardized central bank (CB)
communications.

▶ Cutting-Edge Infrastructure
Transparent, automated, and scalable pipelines.

▶ Applying AI to Macroeconomics
Leverages AI to identify economic narratives and sentiment
over time and across countries.
▶ Today: Global Financial Cycle origins and drivers (Rey, 2015).
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Current Literature

Key Limitations in CB Communication Research:
▶ Data & Standardization: Existing research focuses only on

a few countries or uses only BIS speeches (Born et al., 2014; Picault

and Renault, 2017).
▶ Contribution: standardized dataset of 50 CBs

Larger than existing non-public databases, e.g., Gonzalez and Tadle

(2022)

▶ Reproducibility: Lack of open-source pipelines impedes
reproducible research (Gentzkow et al., 2019; Hansen and McMahon,

2016).
▶ Contribution: transparent and accessible text cleaning, and

Large Language Model (LLM) pipelines
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Applying the Scientific Method to ”AI” and NLP

▶ Failure to share data/algorithms hinders reproducibility and
efficiency
▶ Can reproduce lexical/dictionary methods at immense cost
▶ Cannot reproduce black box LLMs (Claude, Gemini) because

data, prompts, and models must be exactly the same

▶ Irreproducible NLP methods hinders scientific progress and
data reliability in downstream modeling

Figure 1: End-to-End Transparency for Replicable AI

5 / 36



Infrastructure Overview

▶ Transparency
▶ All code/scripts made public on GitHub
▶ Technologies: GitHub, Pyenv, Poetry

▶ Automation
▶ Scripts executed regularly via a Data Version Control (DVC)

pipeline
▶ Technologies: DVC, GitHub Actions.

▶ Scalability
▶ Modular scripts easily adaptable for other CB texts
▶ Technologies: Python Object Oriented Programming, GitHub

▶ Reproducibility
▶ Transparent text analysis
▶ Reproducible pipelines for cleaning, featurization, and LLMs
▶ Technologies: Pyenv, Poetry, S3, DVC, Weights & Biases
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GDCBC Overview

▶ Monetary Policy Statements

▶ Scope
50 CBs (35 API and 15
static currently cleaned)

▶ Data
Approximately 6,066
unique MPSs

▶ Temporal Coverage
1990-Present

Central Bank Count: 51
Sentences: 147,538

Figure 2: Standardized and diverse
corpus for training/testing A.I.
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Technical Infrastructure: Code & Data management

▶ Systematic and replicable data collection
▶ Code version control: Git and GitHub
▶ Python version control: pyenv and uv
▶ Data version control: DVC
▶ Pipeline management: DVC
▶ Package/Library management: Poetry and uv
▶ Storage: AWS S3

▶ LLM infrastructure
▶ LLM experimentation: Weights and Biases
▶ GPU compute: Google Colab

9 / 36

https://git-scm.com/
https://github.com/
https://github.com/pyenv/pyenv/
https://docs.astral.sh/uv/#highlights
https://dvc.org/
https://dvc.org/
https://python-poetry.org/
https://docs.astral.sh/uv/#highlights
https://wandb.ai/site


Code/Folder Infrastructure: Automated & Scalable

▶ Modular Design: Programs/scripts are
modularized for:

1. Text retrieval
2. Text cleaning
3. LLM inference

▶ Standardized Folder Structure:

src : Python scripts
data : Text files

references : GenAI prompts

▶ GDCBC Updates: Automated updates
using DVC.

▶ End-to-End Reproducibility: A full
pipeline ensures reproducible results from
data acquisition to NLP analysis.

Figure 3: Folder
structure: ”cookiecutter”

template
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The Rise of Central Bank Communication

▶ CB communication
dramatically changed since
the 1990s
▶ First official MPS:

Reserve Bank of Australia
in 1990

▶ Rapid growth in MPSs
after the year 2000

▶ MPSs are a crucial tool for:
▶ Managing inflation

expectations
▶ Enhancing policy

predictability
▶ Building credibility and

trust
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Figure 4: Annual MPSs in the
GDCBC
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Descriptive Table

Figure 5: MPS Information
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Dataset Coverage

Figure 6: Countries and Monetary Policy Statements
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Dataset Coverage
▶ The MNB (Hungarian National Bank), BoJ, and ECB have issued

the most statements
▶ CBs in middle-income countries tend to release fewer

statements and have shorter publication histories
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Figure 7: Statements by Country
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Figure 8: Years of Coverage by Country
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Trends in Communication Over Time

▶ MPSs growing lengthier over time (proxied by average adjective per

statement)

▶ MPSs becoming slightly more ”readable” (measured as the average

of multiple readability indexes, such as the Coleman-Liau Index, which assign

US grade-level equivalents to text statements)
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Figure 9: MPS Length
(avg. adjectives per MPS)
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Figure 10: Readability Over Time

Appendix: Visualizing Monetary Policy Keywords Over Time
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Key Characteristics (Patterns) of the MPS

▶ Typical structure includes:
▶ Economic forecasts
▶ Economic analysis (Domestic & Foreign)
▶ Policy (Interest Rates & Forward Guidance)
▶ Comments on Policy Mix (Fiscal, Trade)

Econ. Theme Part-of-Speech (POS) Example Spacy part-of-speech Matcher

Economic Forecasts NOUN+VERB+NUM GDP to grow 3% POS: NOUN, POS: VERB, POS: NUM

Economic Forecasts NOUN+VERB+ADJ+NOUN Markets expect stronger growth POS: NOUN, POS: VERB, POS: ADJ, POS: NOUN

Economic Analysis (Domestic) NOUN+PREP+NOUN Risk of recession POS: NOUN, POS: PREP, POS: NOUN

Economic Analysis (Foreign) NOUN+PREP+NOUN Impact of Brexit POS: NOUN, POS: PREP, POS: NOUN

Policy (Interest Rates) NOUN+VERB+NUM Rates to rise 0.5% POS: NOUN, POS: VERB, POS: NUM

Policy (Forward Guidance) ADJ+NOUN+VERB Tighter policy expected POS: ADJ, POS: NOUN, POS: VERB

Comments on Policy Mix (Fiscal) NOUN+VERB+NOUN Budget to support growth POS: NOUN, POS: VERB, POS: NOUN

Comments on Policy Mix (Trade) NOUN+PREP+NOUN Impact of tariffs POS: NOUN, POS: PREP, POS: NOUN

Table 1: Examples of MPS Sentence Patterns by Part-of-Speech
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Most Common Sentence Patterns by Part-of-speech
▶ Common sentence patterns include:

▶ DET ADJ NOUN (e.g., ”The strong dollar,” ”The current rate”)
▶ DET NOUN ADP (e.g., ”The impact of,” ”The level of”)
▶ ADP DET NOUN (e.g., ”In the market,” ”On the economy”)

▶ Sentences identified with spaCy’s Universal POS tags and
pattern matching.

0 2000 4000 6000
Sentence Count

DET NOUN AUX

PROPN PROPN PROPN

DET NOUN NOUN

DET PROPN PROPN

DET PROPN VERB

ADV PUNCT DET

ADP DET ADJ

ADP DET NOUN

DET ADJ NOUN

DET NOUN ADP

P
ar

t-o
f-S

pe
ec

h 
S

en
te

nc
e 

P
at

te
rn

s 
(F

irs
t-T

hr
ee

 T
ok

en
s)

Most common sentence start patterns

Figure 11: Most Common Patterns by
Part-of-Speech (POS)

Pattern: DET PROPN VERB
Total Count: 2,979

Figure 12: POS: The DET PROPN VERB

pattern is associated with CB
commentary/actions

Appendix: Alternative POS Word Clouds
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Addressing AI Challenges with the Corpus/Infrastructure

▶ Challenges with LLMs
1. Irreproducibility: Insufficient transparency regarding model

inputs and specifications makes replicating it difficult.
▶ We provide open-source code, including LLM code, prompts,

and Jupyter notebooks, ensuring full transparency and
reproducibility.

2. High computational costs and energy consumption.
▶ We implement text filtering (keyword & part-of-speech)

pipelines to reduce the computational burden.

▶ Application to Econ: The Global Financial Cycle (GFC)
▶ Communication Channel: CB Communication ⇒ Market

Expectations ⇒ Financial Conditions
▶ Using our LLM/Data Pipeline we leverage LLMs for Question

Answering (QA) & classification (topic, sentiment) tasks to
explore origins and drivers of the Global Financial Cycle
(Miranda-Agrippino and Rey, 2020, 2022)
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Leveraging Our LLM/Data Pipeline
▶ Infrastructure is abstract for scalability

▶ LLM: seamlessly add more models (ChatGPT, Huggingface,
etc) and tasks (classification, summarization, Q&A)

▶ Text retrieval: seamlessly add more central banks and types of
communications (minutes, speeches, etc)

Figure 13: Comparing Text Retrieval and LLM scripts/programs
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LLM Application: Exploring the Global Financial Cycle
▶ LLM Application: Question Answering (QA)

▶ Prompts model to summarize drivers of global economy
”I want you to identify the main driver of global economic and financial conditions and the origin
country driving these conditions. In the summary please note if any central banks identify the
Federal Reserve as the driver of global economic or financial conditions.”

▶ LLM Application: Aspect Based Sentiment1(ABS)
▶ Prompts model to extract sentiment for specific themes

”Analyze the provided central bank text and identify any discussions related to the impact of
global financial conditions on domestic economies, focusing on themes such as economic growth,
financial conditions, capital flows, monetary policy spillovers. Determine the sentiment (Positive,
Negative, or Neutral) expressed towards each identified theme. Also identify the related country.”

▶ Findings from LLM Analysis:
▶ QA: Central Banks often cite the U.S. economy as a driver of

global economic conditions rather than specifically the U.S.
Federal Reserve.

▶ ABS: Sentiment analysis shows that central banks expressed
more concern about growth and financial conditions rather
than monetary policy and capital flows in the post-2008 period

Appendix: Full Prompt Example

1Aspect-based sentiment identifies sentiment of specific theme
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LLM Application: Summarization (QA)

Figure 14: Summary of the same text differ by LLM
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LLM Application: Aspect Based Sentiment
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Figure 15: LLM can easily produce aspect base sentiment
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Sentiment: Lexical Outperforming LLM
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Figure 16: LLM produces aspect base sentiment indices
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Evidence that Sentiment Drives GFC
▶ High correlation between the 4Q difference of Hubert

sentiment and the Global Factor
▶ Granger tests show that DM and EM aggregated sentiment

(avg.) Granger causes the GFC (4Q-difference)
▶ GFC does not Granger causes sentiment changes
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Summary & Future Work

▶ We construct an open-source standardized database of CB
communications designed as a benchmark for LLM tasks.

▶ We distribute all source code for our Data/LLM infrastructure
to allow researchers to leverage AI tools in a scalable and
reproducible manner.

▶ Using LLMs, we find that central banks often cite the U.S.
economy broadly (rather than mention the U.S. Federal
Reserve or monetary policy spillovers) as the primary driver of
global conditions.

▶ We plan to scale our data to include more central banks and
communication types.

▶ We will include most major closed-source (Gemini, Claude,
ChatGPT) and open-source (Hugging Face) LLM systems in
our easy-to-use infrastructure.
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Monetary Policy Statements

(a) Brazil: Statements in press
section

(b) Canada: Statements in press
section

Figure 18: Examples of MPSs hosted on central bank websites
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Key Words Time Series
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Figure 19: Inflation Mentions by Country
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Appendix: Part-of-Speech Word Clouds
Pattern: ADP DET ADJ

Total Count: 3,613

(a) ADP DET ADJ

Pattern: ADP DET NOUN
Total Count: 3,967

(b) ADP DET NOUN
Pattern: DET ADJ NOUN

Total Count: 5,067

(c) DET ADJ NOUN

Pattern: DET NOUN ADP
Total Count: 4,761

(d) DET NOUN ADP

Figure 20: Common Part-of-Speech Patterns at the Start of Sentences
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Leveraging AI to Extract Economic Narratives
▶ Leveraging Our LLM/Data Pipeline

▶ We leverage LLMs for Question Answering (QA) &
classification (topic, sentiment) tasks to explore origins and
drivers of the Global Financial Cycle (Rey, 2015)

▶ Using our pipeline to extract narrative we:
1. Search keywords (global, spillover, flows): 6,135 sentences
2. Truncate for 2019 data only: 1,228 sentences
3. Randomly select one sentence for each country: 24 sentences
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Regional Sentiment vs. Global Factor
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Figure 21: Regional Sentiment
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